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Abstract: This study looks into the issue of energy management in hybrid electric vehicles (HEVs), with a particular emphasis 

on how to keep a HEV's running costs, which include both gasoline and battery replacement costs, to a minimum. More 

specifically, the study proposes a nested learning framework in which both the best courses of action (such as choosing 

between an internal combustion engine and an electric motor to power the car) and the range restrictions imposed by the 

battery's state-of-charge are dynamically learnt. The inner-loop learning process is essential for reducing fuel consumption, 

whereas the outer-loop learning process is crucial for reducing the amortised cost of battery replacement. Experimental 

findings show that the suggested HEV energy can reduce operational costs by up to 48%. 

 
 

I. Introduction: 

 

Due to worries about excessive fuel consumption and pollution from traditional internal combustion engine 

(ICE) vehicles, electric vehicles (EVs) and hybrid electric vehicles (HEVs) are currently gaining market share 

in the automotive industry. Compared to conventional vehicles, EVs and HEVs have improved energy efficiency 

and fewer emissions thanks to the incorporation of electric motors (EMs) into the propulsion system. HEVs, 

which serve as a bridge between fully electric vehicles and regular ICE vehicles, are more fuel-efficient than 

ICE vehicles and have less battery-related issues than EVs. To fully explore the benefits of HEVs, however, 

complex HEV energy management techniques are required due to the hybrid structure of the propulsion system. 

An ICE and one or more EMs are the components of a HEV's hybrid propulsion system. The ICE transforms 

the fuel's chemical energy into mechanical energy to move the vehicle. Regenerative braking is a method that 

increases the energy efficiency of EVs and HEVs. The EM utilises electrical energy stored in the battery pack 

to move the vehicle. It can also function as a generator collecting kinetic energy during braking to charge the 

battery pack. In order to increase the energy efficiency of HEVs, HEV energy management strategies coordinate 

the functioning of ICE and EM. 

One significant element of the HEV's operational costs is the cost of fuel. As a result, the majority of earlier 

research on HEV energy management focused on increasing fuel efficiency. The driver-controlled pedal action 

is translated into the necessary propulsion power by rule-based techniques for HEV energy management, which 

then decide how much power should be distributed between the ICE and the EM using intuition, human 

judgement, or fuzzy logic. The optimization-based control strategies either reduce the amount of gasoline used 

during a trip with a specified, anticipated, or stochastic driving profile, or carry out control by converting battery 

charge into equal fuel consumption (ECMS and adaptive-ECMS approaches). 

 

Due to the frequent charging and discharging of the battery pack by the EM, the state-of-health (SoH) of the 

HEV battery pack is declining with HEV operation. The paper examined the state-of-charge (SoC) swing, 

number of charging/discharging cycles, and other factors as they relate to the SoH degradation model for the 

EV/HEV battery pack. When its SoH deteriorates to 80% or 70%, the battery pack will approach the end of its 
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useful life. Replacing the battery pack will increase the HEV's running costs. To enhance the HEV's fuel 

efficiency, it is preferable to increase the battery pack's energy capacity within size, weight, and cost limits. In 

particular, the plug-in HEV (PHEV) uses a higher-capacity battery pack that can store more energy. The 

amortised battery replacement cost must not be overlooked in the HEV because the cost of replacing a battery 

rises dramatically when battery capacity is increased. When maximising fuel efficiency, some work has been 

done to take battery SoH degradation into account. These works, however, suffer from one or more of the 

following drawbacks: 

I The ECMS or adaptive ECMS approaches, which depend on knowledge of the future driving profile, provide 

the foundation for the HEV energy management rules they employ. The efficacy of these ECMS and adapative-

ECMS based techniques may suffer if the future driving profile prediction is inaccurate. 

(ii) They employ Ah-throughput or battery output power as the optimization and assessment metrics instead 

of an exact analytical battery SoH deterioration model. 

When it is difficult or perhaps impossible to achieve explicit and precise system modelling, machine learning 

offers a potent tool for the agent (i.e., decision-maker) to "learn" how to "act" optimally. The agent has the ability 

to observe the status of the environment and respond accordingly. As a result of the action, the agent will receive 

a reward. The agent is motivated by the reward and attempts to "learn" from its prior experiences in order to 

derive a policy, which is a mapping from each potential state to an action. The HEV energy management issue 

has been tackled using reinforcement learning, therefore the HEV energy management strategy doesn't depend 

on any information of the future driving profile. The driver behaviour has been learned using an inverted 

reinforcement learning technique, although that is not our main concern. In the proposed work, we look at the 

HEV energy management issue with an emphasis on lowering the running costs of a HEV, which include the 

cost of fuel and amortised battery replacement (i.e., battery purchase plus installation cost). We provide a nested 

learning system in which both the best course of action (which includes choosing the gear ratio and whether to 

utilise ICE or EM to drive the car) and the maximum range that a battery SoC can support are dynamically 

learnt. More specifically, the outer-loop learning process modifies the battery SoH degradation from a HEV's 

perspective while the inner-loop learning process controls the HEV components' operating modes. The 

suggested HEV energy management does not rely on flawless and accurate system modelling due to the use of 

machine learning techniques (i.e., HEV component modelling and driving profile modeling.) The proposed 

nested learning framework for HEV energy management differs from the reinforcement learning-based 

framework in that I it incorporates the amortised battery replacement cost; and (ii) it uses two nested learning 

processes, where the inner-loop learning process is essential for minimising fuel consumption and the outer-

loop learning process is essential for minimising the amortised battery replacement cost. The proposed HEV 

management philosophy reduces operational costs by up to 48%, according to experimental data. 

2. System Description: 

 

Although the goal of this work is to create a smart HEV controller that learns from its experience to determine 

the best energy management strategy, it is still necessary to comprehend the fundamentals of HEV operation. 

We discuss the parallel HEV configuration, which is typical of the majority of the literature work on HEV energy 

management, as an example without losing the generality of the discussion. A parallel HEV can operate in one 

of five different ways depending on the energy flow: One of the following scenarios: the vehicle is propelled 

solely by the ICE, solely by the EM, simultaneously by the ICE and EM, simultaneously by the ICE and EM 

while driving the EM to charge the battery pack, and finally, solely by the EM when the vehicle is braking (i.e., 
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regenerative braking mode.) 

3. HEV Component Analysis: 

 

1) Internal Combustion Engine (ICE): 

 

The fuel efficiency of an ICE is determined using the quasi-static ICE model as follows: ICE(TICE,ICE) 

= TICE • ICE/(m f •Df). (1) In (1), TICE and ICE stand for the ICE's torque (in N•m) and speed (in rad/s), which 

reflect the ICE's operation point, respectively. Depending on the ICE operation point, mf represents the fuel 

consumption rate (in g/s) of the ICE. The fuel energy density (measured in J/g) is Df. The fuel consumption rate 

contour map for a sample ICE in the ICE speed-torque plane is shown in Figure 1(a). 

2) Electric Motor (EM): 

 

The EM can be used as a generator to charge the battery pack or as a motor to move the vehicle. The equation 

for the EM's efficiency is EM(TEM, EM) = (TEM • EM)/Pbatt. (TEM • EM) TEM 0 Pbatt TEM 0 where Pbatt 

is the output power of the battery pack, EM and TEM are the torque and speed of the EM, respectively. Pbatt > 

0 indicates that the battery pack is discharging when the EM is operating as a motor; when the EM is operating 

as a generator, Pbatt 0 indicates that the battery pack is charging while the TEM is negative. The efficiency 

contour map of the EM as a motor or generator is shown in Figure 2. The following restrictions should be adhered 

to for an EM to operate safely and without incident 0 ≤ ωEM ≤ ω max EM , (4) T min EM (ωEM) ≤ TEM ≤ T 

max EM (ωEM). 

3) Vehicle Tractive Force: 

 

When the driver presses the brake or accelerator pedal, the vehicle tractive force FT R is generated to support 

the vehicle's speed and acceleration. R = a+Fg + FR + FAD FR = m• g • cos CR = m• g • sin FAD = 0.5; ; CD; 

AF; v where m denotes the vehicle's mass, a denotes its acceleration, Fg denotes the force caused by road slope, 

FR denotes rolling friction, FAD denotes air drag, denotes the road slope angle, CR denotes rolling friction, 

denotes air density, CD denotes air drag, AF denotes the vehicle's frontal area, and v denotes its speed. The 

tractive force FT R can be derived using given v, a, and. Following that, Twh = FT R • rwh, wh = v/rwh, and 

wheel speed wh are connected to FT R, v, and wheel radius rwh. The required power to move the object, pdem, 

is satisfied by pdem = FT R • v = Twh •wh. 

 

4. A Nested Learning Frame Work For HEV Energy Management: 

 

The running costs of a HEV, including fuel costs and amortised battery replacement costs, are what we are 

trying to reduce in this work. In order to accomplish this, we suggest a nested learning framework for HEV 

energy management, in which the best ways to move the car and the limits on how much the battery's SoC can 

change are simultaneously learned by inner-loop reinforcement learning and outer-loop adaptive learning. The 

outer-loop adaptive learning process is essential for minimising the amortised battery replacement cost, while 

the inner-loop reinforcement learning process is essential for minimising fuel consumption. 

A. Motivation: 

 

The following justifies our usage of reinforcement learning in the inner loop. I The inner-loop HEV energy 

management tries to optimise an expected cumulative return rather than an immediate reward; the reinforcement 

learning likewise aims to optimise the overall fuel consumption during a driving journey rather than the 
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instantaneous fuel consumption rate at each time step. (ii) Different HEV operation modes are needed during a 

trip due to variations in the vehicle's speed, power requirements, and battery charge level; the reinforcement 

learning agent responds differently based on the situation at hand. (iii) The inner- loop HEV energy management 

only knows the current vehicle speed and power demand values, as well as the current temperature. It has no 

prior knowledge of the entire driving journey. The present state and reward are all that the reinforcement learning 

agent needs to learn the best course of action; it is not necessary for it to be aware of previous system inputs or 

intricate system modelling. However, we also take into account battery SoH degradation in the inner loop by 

incorporating the battery capacity fading term into the reward of the reinforcement learning, so that the inner 

loop itself can be used as an independent HEV energy management framework for lowering the overall operating 

cost. The inner loop is the key to minimising fuel consumption. 

The battery pack SoC is clamped by a defined lower bound and higher bound in the earlier work on HEV energy 

management, which uses a fixed battery SoC range. The resulting HEV energy management tactics may then 

have a tendency to consume up the battery energy available even for a few very brief urban journeys, which 

could seriously degrade the battery SoH. Regenerative braking can supply a sizable amount of energy to the 

battery during urban excursions. Using all of the battery's energy is not always essential.  

5. Inner-Loop Reinforcement Learning Process: 

 

1) Reinforcement: 

 

Background information on learning: In reinforcement learning, the decision-maker is referred to as the agent, 

and everything around him or her is referred to as the environment. Each discrete time step in a series, where t 

= 0, 1, 2,... The agent observes the environment's state st S at each time step t and acts at A on the basis of that 

observation, where S and A are the sets of potential states and actions, respectively. The agent finds the 

environment in a new state st+1 and receives a numerical reward rt+1 one time step later, partially as a result of 

the action made. 

A policy of the agent is a mapping from each state s to an action a that identifies the action(s) the agent will 

select while the environment is in state s. An agent's ultimate objective is to identify the best course of action 

so that V (s) = E (X k=0 k •rt+k+1 | st = s) is maximised for each state s S. The expected return when the 

environment begins in state s at time step t and continues to follow policy is represented by the value function 

V (s). The discount rate, which has the value 0 1, is a parameter that makes sure the infinite sum (Pk=0 k 

•rt+k+1) converges to a finite value. What's more, reflects the haziness of the future. RT + k+1 is the reward 

received at time step t +k +1. 

2) State Space: 

 

We establish the parameters for the state space of the inner-loop reinforcement learning, where pdem, the amount 

of power required to move the HEV, v, the speed of the car, and q, the amount of charge in the battery pack, are. 

Under different conditions, various measures ought to be taken. For instance, the HEV controller should charge 

the battery by using the EM as a generator if the power demand is negative, meaning the car is braking. On the 

other side, if the power requirement has a very high positive value, discharging the battery is the appropriate 

course of action to power the EM, which helps the ICE move the car. 

S = s = [pdem, v,q] T |pdem ∈ Pdem, v ∈ V ,q ∈ Q , 

 

An agent for reinforcement learning ought to be capable of observing a state. The current power demand level 
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pdem and vehicle speed level v can be determined in the real inner-loop reinforcement learning implementation 

by utilising sensors to measure the driver-controlled pedal motion. Nevertheless, since the battery pack terminal 

voltage varies with the charging/discharging current and is not a reliable indicator of q, the charge level q cannot 

be determined from online measurement of terminal voltage. The agent requires the Coulomb counting method, 

which is commonly implemented using a dedicated circuit, to observe the charge level q. 

The finite sets of power demand levels, vehicle speed levels, and battery pack charge levels are designated as 

Pdem, V, and Q in, respectively. The definition of these finite sets requires discretization. In particular, Q is 

established by discretizing the [qmin,qmax] range of stored charge into a finite number of charge levels: Q = 

{q1,q2,...,qN}, 

where qN = qmax and qmin = q1 q2... qN. In the charge-sustaining energy management for regular HEVs, qmin 

and qmax are typically 40% and 80% of the battery pack nominal capacity, respectively; 0% and 80%, 

respectively, in the chargedepleting energy management for PHEVs. Since qmax is typically fixed in the HEV 

control, we will adjust qmin value to modulate the battery SoH degradation during the outerloop adaptive 

learning process. Action Area 3 A finite number of actions, each represented by the battery pack's discharge 

current and the gear ratio value, constitute the action space of inner-loop reinforcement learning, according to 

our definition: 

A = a = [i,R(k)]T |i ∈ I,R(k) ∈ R 

 

where the agent performs action a = [i,R(k)]T, which involves discharging the battery pack with current I and 

selecting the kth gear ratio. A finite number of current values in the range [Imax,Imax] are contained inside the 

set I. Please take note that I > 0 indicates that the battery pack is being discharged, while I 0 indicates that it 

is being charged. The permitted gear ratio values, which vary depending on the drivetrain architecture, are 

contained in the set R. Typically, there are four or five different gear ratios altogether. 

As an alternative, we can construct a condensed action space Are, where action are = I is to discharge the battery 

pack with current I (and the gear ratio R(k) is chosen by resolving an optimization issue in a way that minimises 

the fuel consumption rate). The quantity of state-action pairs affects the complexity and rate of convergence of 

reinforcement learning algorithms. As a result, the smaller action space Are contributes to a four- to five-fold 

boost in convergence speed and a reduction in complexity. Yet, in order to solve the optimization problem, this 

condensed action space is dependent on HEV component modelling. For model-free control, we can either utilise 

the original action space, or we can use the reduced action space Are for reduced complexity and increased 

convergence. 

6. Reward: 

 

Instead, we can create a condensed action space Are, where action are = I is to drain the battery pack with current 

I (and the gear ratio R(k) is selected by finding a solution to an optimization problem that minimises the fuel 

consumption rate). The complexity and rate of convergence of reinforcement learning algorithms depend on the 

number of state-action pairs. As a result, the smaller action space Are helps to increase convergence speed by 

four to five times and reduce complexity. However, this condensed action space is dependent on HEV 

component modelling in order to solve the optimization problem. We can either use the original action space for 

model-free control or the reduced action space are for simplified control. 

TD(λ)-Learning Algorithm: 
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Since the TD()-learning technique has a substantially greater convergence rate and performs better in non- 

Markovian environments, we use it to derive the best inner-loop reinforcement learning strategy. Each state-

action combination (s,a) in this algorithm is given a Q value, indicated by Q(s,a), where state s is denoted by the 

power demand pdem, vehicle speed v, and battery charge level q, and action an is denoted by discharging the 

battery with current I and selecting the k-th gear ratio. The predicted discounted cumulative benefit of taking 

action an in state s is roughly represented by the Q(s,a) value. The following is a summary of the TD()- learning 

algorithm. 

The initial Q values in the TD()-learning process are chosen at random. The agent first chooses an action based 

on the Q(s,a) values at each time step t for the current state st. The exploration-exploitation policy is used for 

action selection to reduce the chance of becoming stuck in a suboptimal solution, meaning the agent doesn't 

always choose the option that produces the highest Q(st,a) value for the current state st. The agent observes a 

new state st+1 and obtains a reward rt+1 after performing the chosen action at. The agent then modifies the Q(s,a) 

values for all the state-action pairings, which updates the eligibility e(s,a) of each state-action pair, depending on 

the observed st+1 and rt+1. A constant between 0 and 1 represents the eligibility e(s,a) of a state-action pair, 

which indicates the frequency with which the specific state-action combination has been encountered recently. 

We do not need to change Q values and eligibility e of all state-action pairs because the eligibility of the state-

action pairs is used. As the eligibility of all other state-action combinations is at most M, which is insignificant 

when M is large enough, we simply preserve a list of the M most recent stateaction pairs. 

Application Specific Improvement of the TD(λ): 

 

Learning Algorithm: By accepting various HEV operating modes, we tweak the TD()-learning algorithm to 

enhance its performance and convergence rate in the HEV control scenario. In particular, in addition to the 

recorded Q values, the agent also considers the actual HEV operating mode when choosing an action for the 

present state. For instance, if the power demand is negative, as in the case of regenerative braking, the agent will 

undoubtedly select the maximum permitted charging current for the battery pack in order to maximise the 

recovery of kinetic energy. The agent will be more likely to use EM power to move the vehicle if the battery 

charge level is very high. Moreover, the agent is likely to utilise more ICE if the battery charge level is very low. 

Complexity and Model-Free Analysis: 

 

The TD()-learning algorithm has a temporal complexity of O(|A| + M] at each time step, where |A| is the total 

number of actions and M is the number of recently stored state-action pairings. Since |A| + M typically lies 

within a few hundred, the algorithm has a very low computational cost. The TD()-learning algorithm typically 

achieves convergence within L time steps, where L is around three to five times the number of state-action pairs. 

The TD()-learning method can converge in simulation after an hour of driving because to the application-specific 

improvement, which is substantially faster than the lifetime of a HEV. The makers may initialise the Q values 

to further accelerate the convergence rate. 

7. Experimental Results: 

 

We model a PHEV's operation using the model created in the vehicle simulator ADVISOR [1]. Table 1 provides 

an overview of the PHEV's important characteristics. We put our suggested policy to the test and contrast it with 

the rule-based and reinforcement learning (RL) policies. We utilise both real-world and test driving trip profiles, 

which have been created and made available by various initiatives and organisations like the U.S. Environmental 
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Protection Agency and the European Union's MODEM (Modeling of Emissions and Fuel Consumption in Urban 

Areas project). 

 

Vehicle Transmission ICE 
m = 1254 kg ρreg = 1.75 Peak power 41Kw 

CR = 0.009 ηreg = 0.98 peak eff. 34% 

CD = 0.335 ηgb = 0.98 EM 

AF = 2 m2; R(k) = [13.5; 7.6 peak power 56kW 

rwh = 0.282 m 5.0; 3.8; 2.8] peak eff. 92% 

 Battery Capacity 25A·h Voltage 240V  

Table 1. Phev key parameters 

The running costs of the PHEV during various driving excursions as simulated by Table II under the suggested, 

RL, and rule-based policies are shown. According to Table II, for instance, the suggested policy causes 0.0028% 

battery capacity fading and 344.17g of fuel used during the MODEM571riving, which translate to $0.76 in 

amortised battery replacement costs and $0.37 in fuel consumption costs, for a total operating cost of $1.13, 

With an average gas price of $3/gallon in USA and a PHEV battery replacement costing $8,000, A PHEV's 

battery replacement typically costs between $10,000 and $12,000 [3] for a battery pack with an average capacity 

of 10kWh. For the 6kWh battery, we use a replacement cost of $8,000. To assess the battery capacity decreasing 

throughout each journey, we employ the whole cycle-decoupling approach [30]. Table II shows that, when 

compared to RL and rule-based policies, the proposed policy consistently delivers the lowest operational cost. 

The proposed policy reduces operational costs by up to 48% when compared to the rule-based policy and up to 

47% when compared to the RL policy. 

 

Trip Trip Proposed RL Rule 

MODEM 5713 
cost 

0.0028%($0.76) 
+344.17g($0.37) 
=($1.13) 

0.0045%($1.22) 
+310.56g($0.33 
=($1.55) 

0.0044%($1.18) 
+383.30g($0.41) 
=($1.59) 

Hyzem Motorway 
cost 

0.0018%($0.50) 
+1991.9g($2.16) 0 
=($2.66) 

0.0048%($1.28) 
+2001.9g($2.17) 
=($3.45) 

.0050%($1.36) 
+2093.6g($2.27) 
=($3.63) 

FTP75 

 
cost 

0.0027%($0.73) 
+311.40g($0.33) 
=($1.06) 

0.0043%($1.16) 
+295.97g($0.32 
=($1.48) 

0.0048%($1.30) 
+623.73g($0.67) 
=($1.97 

US06 
cost 

0.0028%($0.74) 
+414.17g($0.45) 
=($1.19) 

0.0043%($1.17) 
+354.34g($0.38) 
=($1.55) 

0.0036%($0.98) 
+321.02g($0.34) 
=($1.32) 

UDDS 
cost 

0.0032%($0.85) 
+298.48g($0.32) 
=($1.17) 

0.0044%($1.19) 
+355.85g($0.38) 
=($1.57) 

0.0048%($1.30) 
+630.22g($0.68) 
=($1.98) 

OSCAR 
cost 

0.0021%($0.57) 
+149.51g($0.16) 
=($0.73) 

0.0043%($1.16) 
+222.75g($0.24) 
=($1.40) 

0.0042%($1.12) 
+242.54g($0.26) 
=($1.38) 

Table 2. Operating cost of the phev in different trips using the proposed, rl, and rule-based policies. 

The following findings are also based on Table II: I With a PHEV, the amortised battery replacement cost makes 

up a significant amount of the overall running cost and, for some driving trips, is even higher than the cost of 

fuel. (ii) For shorter driving distances, the proportionate amortised battery replacement cost is more significant. 

(iii) In addition to lowering running costs, our suggested approach can greatly increase battery life. (iv) Despite 
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the fact that the RL policy can lower fuel consumption when compared to rule- based policy, in some cases the 

operating cost from the RL policy is even greater because the RL policy does not account for the battery cost 

when optimising the fuel usage. (v) When maximising the battery life, the amortised replacement cost is not 

negligible. 

8. Conclusions: 

 

In order to reduce a HEV's running costs, the energy management problem for HEVs is examined in this research 

utilising a nested learning approach. While the outer loop modifies the battery SoH degradation globally, the 

inner loop controls the operation modes of the HEV components and is crucial to minimizing fuel use. The 

suggested HEV energy management programme reduces operating costs by up to 48%, according to 

experimental findings. 
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