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Abstract

In 1985, Matsumoto. M.,[6] has discussed the properties of special hypersurface of Rander’s space with
b;(x) = 0; b being the gradient of a scalar function b(x) . He had considered a hypersurface which is
given by b(x) = constant. In this paper we have considered the hypersurface of a generalized (@, B)-
metric space with metric given by (1.1) which is given by the same equation b(x) = constant. The
condition under which this hypersurface be a hypersurface of the first, second and third kind have also
been obtained.

Keywords: (a, )- metric, hypersurface, angular metric, the reciprocal tensor, covariant differentiation,
h- and v- covariant derivatives.

1. Introduction

The notion of (&, §)- metric was introduced in 1972 by Matsumoto. M., [5 & 6]. On the basis of
Rander’s metric which was attracted physicist’s attention [3, 4]. A Finsler metric L (x, y) in a differential
manifold M™ is called (a, §)- metric, if the L is a (1) p-homogenous in the variables « and 3,

where a = \/aij (x) ytyJ and B = b; (x) ¥ is one form of degree one.

We have a number of (@, §)- metric such as Rander’s metric, Kropina metric, generalized Kropina
metric, Matsumoto metric as examples. With respect to these metrics, several authors ([4], [5], [6],[7],
[10], [11], [12]) where we obtained important result and theorems. In this paper, we take the (a, §)-
metric given by,

"=Ca"+Ca" 1B+ Csap™t+C, " (1.1
where Cy, C5, C3 and C, are constants and n is a positive integer.
If Ci=0C=1,C,=C3=0 and n = 1, then we get Rander’s metric
L=a+p [11]

In this way by giving different values to C;,C,, C3 C, and n we get different type of (a, §)- metric
discussed by several authors [8], [9] etc earlier. Therefore, the metric (1.1) has become too much
interesting because it is the generalization of several (a, §)- metric. Therefore, we say this metric as
generalized (a, §)- metric and space generalized (a, 8)- metric.

In 1985, Matsumoto. M.,[6] has discussed the properties of special hypersurface of Rander’s space
with b;(x) = 0; b being the gradient of a scalar function b(x) . He had considered a hypersurface
which is given by b(x) = constant.

Singh N et. al., Vol 1 Issue 1, pp. 35-45, 2020
Page No 35



ég&#-‘ﬁw
{ §e jInternational Journal For Academic Research and Development
2T ISSN 2582-7561 (Online) (©)IJARD
e n Vol. 2, Issue 1
2020

In this paper we have considered the hypersurface of a generalized (a, §)- metric space with metric
given by (1.1) which is given by the same equation b(x) = constant.

The conditions under which this hypersurface be a hypersurface of the first, second and third kinds
have also been obtained.

2. Preliminaries.

Let F™* = (M™, L) be an n-dimensional Finsler spaces with (a, 8) given by (1.1) where

a= \/aij (x) y! y/ is a Riemannian metric in M™ and 8 = b; (x) y' is a differential one form in M™.

The derivatives of L = (a, B) with respect to and are given by

Lo =" [Cramt + lbgn-2p4 S ] @2.1)
» .
Lp = 1|22 4 50 pne2 o 4 ¢, gt

C;(n-1) (n-2)a™ 3B
n

Lyg = Y™ [Cl(n —1) a2+ ] +(1-n)L 12 2.2)

_ _ -3
Lgp = [1-n [(,‘3 (n-1) (T; 2)a pm +Cy(n—1) ﬁn—z] +(1-n)L? L[23

_n[C; (n-1)a™?  C3(n-1)p"2 _
Laﬁ=L1n[2”n“ +20= ]+(1—n)L1LaLﬁ
Where
=9 = oL _ Ola
a T a7 Lﬂ_aﬁ’ Laa_aa
_aLﬁ _aL
Lﬁﬁ—ﬁ and Laﬁ—a—;

The normalized element of support [; = 3l L is given by
li = La Vi a'_l + Lﬁ bi
I =L'"" [C1 a1 27D (:_1) a™?p+ % ,B”'l]yi at

1-n [Cz“_”‘brw
n n

B2 a+Cy prY| by 23)
Where y; = a; jyj , the angular metric tensor h;; = L 9, 5] L is given by

hi, = Po ajj + qo b by + g1 (b; ¥ + b yi) + P2 i ¥ (2.4)
Where

Py, = % =q-1][2n [Cl a1 4+ &) (2_1) an—zﬂ +% ﬂn—l]

_ _ n-3
Go = Ligg = 127 [RODED I 4 ¢, (n — 1) p72] + (1 - m) L

2.5)
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_ n-2 — n-2z
Gy = LLgg — ! [Lz_n {C2 n-1a + Cz(n rll)ﬁ } + (1 _ n) La Lﬁ]

a n

J1-n C,(n—1) n-2 , C2(n-1) (n-2)a™ 3B a- )L‘lLZ
P—zziz(l‘cm_L_m):i { (ln oo n ) }+ n a

— — C -1 - C —
a « az Lln(clanl"'Z(Z )an2ﬁ+73ﬁn1)

a

The fundamental tensor g;; = %51 5] L? is given by

9ij = Po ajj + P§ by b + P*, (b;yj + bj y;) + 4%, vi yj (2.6)

Where

_ _ n-3
Py =qo+ L =12 [2ODEDE -1y 2|+ (1 -n) 1 + 13

n

* Lalg _  _1 [ ;2-n(Cc(m-Da™2 3 (n-1)p">
P—1—Q—1+_a =a [L { + " }

n

+ (1= n) Lo Lg| + o 2.7)

C,(n—-1) (n=2) a™ 3 B

T { (Cl(n —1) "2+ - ) }+ (1-n)L 112

*
Z,=P_,+ (—) =— -
q-2 2 a a2 i-n (C1 an-1 462 (Z 1 -2 ﬁ+(;3 ﬁ"_l)

a
Lo\2
+(%)
a
Moreover, the reciprocal tensor g%/ of g; j 1s given by [5]
Ll o o o .
97 =5 = Sob' b/ =S5:(b'y/ + b ) =S, 'y 2:8)
0
Where
b* = aYb;
So = Py P§+ a? [Py q%, — (P%1)?]

Po[Po (Po+ P§ b2+ 2 P2, B+ a2, a2)+(a? b2 B2)(—P2, "+ P} a2, )]

J=Py [Py (Po + P§ b? + 2P, B + q*, a®) + (a?b* — /32)(—1311*12 +P§ q%,)]

Py Pi+ a?|P§ qX,— (P21)?]

So = ;
PX; Po+ B [(P21)2—P5 q%,]
S, = [Ps qZ,+b* {P5 a2, — (PX1)%)]

J
The h v-torsion tensor ¢;j, = % Oy gi j 1s given by [5]
2 PO Cijk = Pfl (hl] my + h]k m; + hki m]) + rnm; m] my (210)

Where
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a Py %
T1=Poa_;_3p—'1%, m; = b —a’ By (2.11)

It is noted that the covariant vector m; is a non-vanishing one, and is orthogonal to the element of
support y*.

Let {j ¢ k} be the components of Christoffel’s symbol of the associated Riemannian space R and V,,
be covariant differentiation with respect to x* relative to this Christoffel’s symbol, we shall use the
following tensors.

2E;j = byj + by, 2 Fyj = byj — by (2.12)
Where bl] = V]bl
If we donate the Cartan’s connection C I as (ij*i , FOk*i, cjki) then the difference tensor

Djk*i = jk*i — {j " k}of (@, B) — metric space is given by [6]

D' = B'Ejx + FiBj + F{ By + B} boy + B, byj — bom 9™ Bj. — Cjm AR — Chm AT*  (2.13)
+Cjkm AT g" + (c]-im c™+chn csf — ik c,ins)
Where

By = Pg b + PZ yi B' =gY B; , Ff = g F;;

P* _ Py
Bl]:{P—O1 (al-j—a’ Zyly])+a—ﬁ°mlm]}/2
Bf = g By , (2.14)

ZL :BELE00+BmEk0+Bkan+BoF]Zn,

A™ = B™ Eo + 2By F", By, =B;y',
Here and in the following we denote 0 as contraction with y* except for the quantities P§ , qo and c,.

3. Induced Cartan Connection.

Let F* 1bea hypersurface of F™, given by the equation xt = x' (u%) suppose that the matric of the
projection factor x}, = % is of a rank (n — 1), the element of support y' of F™ is to be taken
tangential to F™ 1 i.e.

yi=xb v, (3.1)

Thus v¥ is the element of support of F™~1 at the point u®. The metric tensor Jap and the hv-torsion
tensor Cyp, of F™~! is defined by
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B . _ i yvJ yk
dap = Gij Xée Xﬁ > Cafo = Cijk Xée Xﬁ Xy (3-2)

at each point u® of F™ !, a unit normal vector N%(u, v) is defined by
gij = (x W,y wv)}Xy N =0, gij{ix@W, y(w, v)}IN'N =1 (3.3)

As for the angular metric tensor h;; we have

If (X[, N;) denotes the inverse of (B,; , N i), then we have
Xt = g% g; B, x,xf = of, XENI=0, (3.5)
Xen; =0, N; = gy N
X, BF+ N'N; =6,

The induced connection ICT = (F ﬁy“ , Gg a Cmf‘ ) of F™ 1 induced from the Cartan’s connection

Cr= (ij*i Tor™, Cjki) is givenby [ 6]

py = X (Xlih/ + ™ Xg Xy ) + Mg Hy (3.6)
G = XF(Xbp +To;" + X)) (3.7)
Cf, = X G X] x¥ (3.8)
Where
Mg, = N Cji X3 Xy, Mg = g% Mg, (3.9)
Hp = N; ( Xp + To;" X5 ) (3.10)
an By = Fur’ g = AapV >

the quantities Mg, and Hp are called second fundamental v-tensor and normal curvature vector
respectively [ 6 ].

The second fundamental v-tensor Hp,, is defined as [ 6 ]

Hgy = Ny ( X by + T X} X)) + Mg H, (3.11)
Where

Mg = N; Cjy X} N¥ (3.12)
The relative h- and v-covariant derivatives of projection factor X’ with respect to I C I" are given by

Xlg = Hep NY, Xip = Mgg N' (3.13)
The equation (3.11) shows that h is generally not symmetric and

Hg, — H,p = Mg H, — M, Hp . (3.14)
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Furthermore (3.10), (3.11) and (3.12) yield
HO}/ = Hy N Hyo = Hy + My HQ N (315)

We quote the following Lemma which is due to Matsumoto [6]

Lemma (3.1): The normal curvature hy = Hp v# vanishes if and only if the normal curvature vector
Hg vanishes.

The hyperplanes of first, second and third kinds are defined [ 6 ] we only quote the following.
Lemma (3.2): A hypersurface F™1 is a hyperplane of the first kind if and only if H, = 0 .

Lemma (3.3): A hypersurface F™*~1 is a hyperplane of the third kind with respect to the connection
CTlifand only if H, = 0 and Hup = 0.

Lemma (3.4): A hypersurface F*~1 is a hyperplane of the third kind with respect to the connection
Crlifandonlyif Hy =0, Myp = Hap = 0.

4. The hypersurface F*™1 (c)

Let us consider a special (a, f)-metric (1.1) with a gradient b; (x) = d;b for a scalar function b(x) and
consider a hypersurface F*1(c) which is given by the equation b(x) = c(constant).

db(x(u))

ur
regarded as covariant components of a normal vector field of F"~1(c).

From the parametric equation x! = x* (u%) of F"~1(c), we get 0 =b;x., , so that b;(x) are

Therefore along the F*~1(¢) we have
bixL =0, byt =0 4.1)
In general the induced metric L(u, v) from the metric (1.1) is given by
3 . n/2
L"(w,v) = ¢ {aij (x(u)) X} Xé v* vﬁ}
therefore the induced metric of F™*~1(¢) becomes
L(u,v) = \/Claaﬁ (w)vevh agp = a;j(x(w)) XL X;; 4.2)

Which is a Riemannian metric, at the point of F*~1(¢) from (2.5), (2.7) and (2.9)

we have
2(1-n)/n .2
_ A2/n _(@a-nc C; —
Pp=0C"", o = 1n2 ) qg-1=0,
2(1-n)/n .2 (2-n)/n) -1
B 2/n __p . (2-n)C c? « _ C Ga
P,=—C"a?, Py =" , PLy = —p7
qZ, =0,
6
C(z—z
J== [CZn?+ (1 —n) CZb?]
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- (1-m) ¢}
So = c2/™[c2 n2+(1-n) ¢2 b?] (4.3)
S = Ci Cn
L7 @M [c2 n2+(1-n) c2 b2
S = — b? 2
27 g2 c2™ [c2 n2+(1-n) €2 b2]
Therefore from (2.8) we get
ij_al _ 3 (1-n) ipj_ CiCn ind o B
g c™ M ez n2+(1-n)c2b?] ac™ [c2n2+(1-n) 2 b?] (b'y” +b7y') (44)
b*cf iyJ
@ M [ mer(my c207] 7 Y
Thus along F™*~1 (4. 1) and (4.4) lead to
‘s bZ CZ nZ
Uh.h. — 1
g b;b; T n 4oy 27 therefore we get
] _ b2 C12 n? ] 2_ i
b (x () = J Ty L8 b = aliby by (4.5)
Again from (4.4) and (4.5) we get
bi= adiip = b2c;/™ (¢} n2 +(1-n) 3 b?] Ni g Gab® i 46
= ah = Cin? anCly (4.6)

Hence we have the following,

Theorem 4.2 : Let F™ be a Finsler space with (&, #)- metric (1.1) and b;(x) = 9d;b (x). Let

F™ 1(c) be a hypersurface of F" given by b (x) = ¢ (constant) suppose the Riemannian metric
a;j(x) & xt 8 2/ be positive definite and b; be non-zero field then the induced metric an F*~1(c)
is a Riemannian metric given by (4.2) and relation (4.5) and (4.6) hold.

Along F™~1(c), the angular metric tensor and metric tensor are given by

2 2(1—n)
2 = _ (1-n)c, ™ c?
hij = Cl /m aij - C{l a 2 Vi y] + ;2 z bi b] (47)
2(1-n) 2-n
2 (2-m)c, ™ c¢2 c," Ccyat
gij = C1 /n aij + rllz z bi b] + 1 nz (bl y] + b] YL) (48)

From (4.1), (4.7) and (3.4) it follows that if h((;;g) denote the angular metric tensor of
Riemannian metric a;;(x) then along F*~*(c), hqp = C; 2/n hg;;) . From (2.7) we get i—f = 0 thus
along F™"1(c), (2.11) and (4.3) give

_ 61(4—3n)/n a1

3
r = “ m-2)2n-1), m; = b;

n3

Therefore hv-torsion tensor becomes
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C(Z 3n)/n

c2
Cijk ZnaC [(b h]k + b hkl +bk l]) + —2 (Tl— 1) (27’1 1) bi b] bk] (49)

Therefore (3.4), (3.9), (3.12), (4.1), (4.5) and (4.9) gives

2
My = — JZ b2 i n? hag 1My =0 (4.10)

AEC en [c2n? +(1-n) c2b?]
Hence from (3.14) it follows that H,p is symmetric.

Theorem 4.2: The second fundamental tensor v-tensor of F*~1(c), is given by (4.10) and the
second fundamental h-tensor H ;g is symmetric.

Next from (4.1) we get b;jg X L+ b X fx| g = 0 therefore from (3.13) and the fact that

bl|ﬁ = bl|] ﬁ + bl|] N] Hﬁ [6] we get

by X X] + byj Xu N Hg + Heg by N' =0 (4.11)

Since b;; = —by, Cij from (3.12) , (4.5) and (4.10) we get

. . b2 CZ n2
by; Xqg N/ =— |—= L M, =0
ct [cEn? +(1-n) CZb?]

Thus (4.11) gives

2 2,2
—Ar Hep + by; X X =0 4.12)
cl [cZn? +(1-n) CZb?]

It is noted that b;|; is symmetric. Furthermore contracting (4.12) with vF and v respectively and
using (3.1), (3.15) we get,

2 02n2 . .
\/2 brtin HO{+ bl|]Xl§fy] =0

C [cZn? +(1-n) CZb?]

2 r2.,2 . .
—2 Ho+ by; y'y/ =0 (4.13)
ct [cZn? +(1-n) CZb?]

In view of Lemmas (3.1) and (3.2), the hypersurface F*~1(c) is a hyperplane of the first kind if only
if Hy = 0.

Thus from (4.13) it follows that F*~1(¢) is the hyperplane of first kind if and only if

by y'yJ = 0. This b; ; being covariant derivative with respect to Cartan’s connection C I' of F™, it
may depend on y!. On the other hand V; b; = bj is the covariant derivative with respect to the
Riemannian connection {j ‘,} constructed from a;;(x), therefore b;; does not depend on yt. We shall
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consider the difference b;|; — b;; in the following. The difference tensor D ;k =T ]l:k —{ '} isgiven
by (2.13), since b; is a gradient vector, from (2.12) we have

Eij=bij5 Fij=0, F]l=0
Thus (2.13) reduces to
Dy =B'bjx+ B} box + B i boj — bom 9™ Bjs = C jy AP = Ckem A" + Cian AT g™

HAS[Cln CTh+ Chm C T = C TR C L] (4.14)

But in view of (4.3) and (4.4) the expression (2.14) reduce to

c2a=m/m 2 o) cEmIM ¢, g1
i _ (1-n)c§ i C1Com i
B' = rmra-m ami? Y qoaeam any”

__G -2
Bij = goe: (aij — @72 1))

i

Bi= Gy ( i a—Z i ) _ C23(1_n) bi b: — (:22 b:
J 7 2nac, \J Y'Y 2nac,{C? n2+(1-n) €2 b?} T 2na2{c?n2+(-n) cZ b2} y

(4.15)
k =B Kboo+BMby , A™ = B™by,
By the virtue of (4.1), we have B § = 0, Bjo =0  which give AJ" = B™by, , therefore we
have
Djo = B'bjo+ B} byg — B™ C }, bog (4.16)
i _ pi _ (1-n) (:22 i cCi1Cn i
Doo =58 boo = [{Cf n2+(1-n) c2 b2} b*+ a{C? n2+(1-n) cZ b2} y ] boo (4.17)
Thus paying attention to (4.1) along F™~1(c), we finally get
P (1-n) c? b? CiCyn _ (1-n)cZp™ i
by Djo = (2 n2+(1-n) CZ b2} bjo + 2a{C? n2+(1-n) CZ bz}bf boo {(CZn2+(1-n) ¢Z b2} C jm bi boo
(4.18)
i (1-n) €% b?
b; Do = boo (4.19)

~{cZn2+(1-n) cZ b2}
From (3.12), (4.5), (4.6) and (4.10) it follows that
b™ b; Clpy X} = b2 My =0
Therefore the relation
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bi/j = bij — b, Dj; and equation (4.1), (4.18), (4.19) give
. . . . CZ n? .
bl/] XCLI y] = biO Xalf _bT' DI:rO Xéf = [612"_2 +(11—11.) CZZbZ] bio XCl(
biy; ' y) = boo — by Dio = L
i/j Y'Y’ =Dboo— by Upo = [cZn? +(1-n) cZp2] 00
Consequently (4.13) may be written as
\/_2 Cz/n .
1 oyl —
b Hy,+cin [CZn? (=) G207 by X, =0
VbZ il boo =
Hy+cin [CZn? +(1=n) 3p7] D00 = 0 (4.20)

Thus the condition Hy = 0 is equivalent to by = 0, where b;; does not depend on
y'. Since y'is to satisfy (4.1) the condition is written as

bi; yiyl = (b; ¥t )(d; yJ) for some d; (x) so that we have
2 bij = bi d] + b] di (421)
From (4.1) and (4.2) it follows that

byo = 0, by XL X} =0, b X' yJ = 0.

Hence (4.20) gives H, = 0. Again from (4.1), (4.21) and (4.15) we get

P d bZ _ . ] _ . ] _ C
biO bl = 02 , Am = 0, A]l Xﬁ = 0, and BU X& Xﬁ = ZnaZCl haﬁ .

Thus (3.9), (4.4), (4.5), (4.6), (4.10) and (4.4) give

i v n3 3 ¢, b%d
b, D}, X5 X} = — 12— 0 h
TrUTeTh sac?™(c2 n2+a-mycz b2 OF

Therefore the equation (4.12) reduces to

b2 C% n? 3c¢icy,p?d
J—l" Hyp +"12—,2,LK20 hap =0 (4.22)

2/n
'K 4a €]

where
K ={C?n?+ (1 -n)C2b?}
Hence the hypersurface F*~1(c) is umbilic.

Theorem 4.3 : The necessary and sufficient condition for F*~1(c) to be hyperplane of the first
kind is (4.21) and in this case the second fundamental tensor of F*~1(c) is proportional to its
angular metric tensor.

In view of Lemma (3.3) F™*~1(c) is a hyperplane of second kind if and only if
Hy, = 0and Hep = 0 thus from (4.22) we dy = d;(x) y* = 0, therefore there exist a function E(x)
such that
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d;(x) = E(x) b;(x) thus (4.21) gives

Theorem 4.4 : The necessary and sufficient condition for F*~1(c) to be a hyperplane of the
second kind is (4.23).

Finally (4.10) and Lemma (3.4) show that F~1(c) does not become a hyperplane of the third kind.

Theorem 4.5 : The hypersurface F*~1(c) is not a hyperplane of the third kind

References

1. Aikou, T., Hashiguchi, M and Yamaguchi, K. : On Matsumoto’s Finsler space with time measure, Rep. Fac. Sci.
Kagoshima Univ. (Math. Phys. & Chem.), 23 (1990), 1-12.

2. Hashiguchi, M., Hogo, S and Matsumoto, M. : On Lansberg spaces of two dimensions with (a, B)- metric Korean Math.
Soc. 10 (1973), 17-26.

3. Kropina, V. K. : On Projective Finsler spaces with a metric of some special form. Nauen Diklady Vyass Sholy, Fiz. —
Math. Nauki 1959 no. 2 (1960), 38-42.

4. Kropina, V. K. : Projective two dimensional Finsler spaces with special metric. Trudy Sem Vektor. Tenjor Anal 11
(1961), 277-292.

5. Matsumoto, M. : On C- reducible Finsler spaces. Tensor N. S. (24) (1972), 29-37.

6. Matsumoto, M. : The induced and intrinsic Finsler connection of a hypersurface and Finslerian projective geometry. J.
Maths. Kyoto Univ. 25 (1985) 107-144.

7. Matsumoto, M. : A slope of mountain is a Finsler surface with respect to a time measure. J. Math. Kyoto Univ. 29 (1989),
17-25.

8. Pandey, R. K. : On a special (a, B)- Metric and its Hypersurface, J. T. S Vol. 2 (2008), 31-35

9. Pandey, T. N. and Mishra, Markandey Kumar. :On a Hypersurface of a special (a, B)- metric space. Journal of The
Tensor Society of India, Vol. 22 (2004).

10. Park, Hong-Sun and Choi, Eun Soo. : On a Finsler space with a special (a, B)- metric.

11. Rander’s, G. : On an asymmetrical metric in the four-space of general relativity. Phys. Rev. (2) 59 (1941), 195-199.

12. Shibata, C. : On Finsler spaces with an (a, B)- metric. Journal of Hokkaido Univ. Edu. (Section II1A), 35 (1984) 1-16.

Singh N et. al., Vol 1 Issue 1, pp. 35-45, 2020
Page No 45



